β-decay of 78Cu produced with the ISOLDE resonance ionization laser ion source

J. Van Roosbroeck1, J. Cederkall2, H. De Witte1, D. Fedorov3, V.N. Fedoseyev4, S. Franchoo2, H. Fynbo2, U. Georg2, M. Górski1, M. Huyse1, O. Jonsson2, U. Köster2, K. Kruglov1, V.I. Mishin4, K. Van de Vel1, P. Van Duppen1, L. Weissman2, the IS365 Collaboration and the ISOLDE collaboration

1 Instituut voor Kern- en Stralingsfysica, 3001 Leuven, Belgium
2 ISOLDE, CERN, 1211 Genève 23, Switzerland
3 St. Petersburg Nuclear Physics Institute, 188350 Gatchina, Russia
4 Institute of Spectroscopy, Russian Academy of Sciences, 142092 Troitsk, Russia

Nuclides in the vicinity of the doubly magic 78Ni nucleus are ideal test cases for the nuclear shell model [1, 2]. Still, experimental data in this region is rather scarce because of experimental limitations. In this contribution we report the first observation of the β-decay of 78Cu, only one proton and one neutron hole away from 78Ni.

Heavy copper isotopes were produced at the ISOLDE-facility at CERN (Geneva, Switzerland) [3]. A Ta rod, serving as a proton-neutron-converter, was bombarded by high-energy (1.4 GeV) protons and mainly the low-energy spallation neutrons hit the parallel mounted standard ISOL uraniumcarbide/graphite target to induce rather low-energy fission [4]. This method helped to suppress the omnipresent background of neutron-deficient rubidium isotopes produced abundantly in high-energy fission.

The ionization with the ISOLDE RILIS (resonance ionization laser ion source) [5, 6] allowed to separate the copper isotopes with increased selectivity to compete with the background of isobars produced in orders of magnitude higher quantities. After extraction and mass separation, the 78Cu isotopes were collected and the radioactive decay was measured using a β – γ – γ-coincidence set-up.

The experiment permitted the first observation of the β-delayed γ-decay of 78Cu. The $4^+
ightarrow 2^+$ and $2^+
ightarrow 0^+$ transitions in the daughter nucleus 78Zn, known from literature [7], with energies of 890.7(3) keV and 730.4(3) keV respectively, were observed. Both γ-rays are in coincidence and have equal intensities. A third γ-ray of 114.9(2) keV was also observed in the β-decay of 77Cu and thus unambiguously attributed to being populated in β-delayed neutron emission to 77Zn. This β-delayed neutron branch of $P_n = 65(20)\%$ (deduced from the observed γ-ray intensities) is unexpectedly strong. The half-life determined from these γ-rays is $T_{1/2} = 290(103)$ ms and agrees well with the values known from literature 342(11) ms [8] and 335(6) ms [9] which were measured by detection of β-delayed neutrons. The deduced decay scheme is shown in Fig. 1.

This work was supported by the European Union (contract ERBFMGEECT980120).

References